On the non-homogeneous cubic diophantine equation with five unknowns

$$
x y-z w=R^{3}
$$

S.Vidhyalakshmi ${ }^{1}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract

: This paper illustrates the process of determining non-zero distinct integer solutions to the non-homogeneous cubic equation with five unknowns $x y-z w=R^{3}$. A few relations

 between the solutions and special figurate numbers are presented.Keywords : non-homogeneous cubic , cubic with five unknowns ,integer solutions, Special figurate numbers

Notations:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{k}}^{3}=\frac{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)}{6}, \mathrm{P}_{\mathrm{k}}^{5}=\frac{\mathrm{k}^{2}(\mathrm{k}+1)}{2}, \mathrm{t}_{\mathrm{m}, \mathrm{n}}=\mathrm{n}\left(1+\frac{(\mathrm{n}-1)(\mathrm{m}-2)}{2}\right), \mathrm{CP}_{\mathrm{k}}^{6}=\mathrm{k}^{3}, \\
& \mathrm{CP}_{\mathrm{k}}^{8}=\frac{8 \mathrm{k}^{3}-2 \mathrm{k}}{6} \mathrm{CP}_{\mathrm{k}}^{18}=3 \mathrm{k}^{3}-2 \mathrm{k}, \mathrm{CP}_{\mathrm{k}}^{12}=2 \mathrm{k}^{3}-\mathrm{k}, \mathrm{CP}_{\mathrm{k}}^{16}=\frac{8 \mathrm{k}^{3}-5 \mathrm{k}}{3}
\end{aligned}
$$

Introduction:
The Diophantine equations are rich in variety and offer an unlimited field for research . In particular refer [1-16] for a few problems on cubic equation with five unknowns. This paper concerns with yet another interesting cubic diophantine equation with five variables given by $\mathrm{xy}-\mathrm{zw}=\mathrm{R}^{3}$ for determining its infinitely many non-zero distinct integral solutions.A few relations between the solutions and special figurate numbers are presented.

Method of analysis :
The non-homogeneous cubic equation with five unknowns to be solved is

$$
\begin{equation*}
x y-z w=R^{3} \tag{1}
\end{equation*}
$$

The introduction of the transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}, \mathrm{z}=\mathrm{p}+\mathrm{v}, \mathrm{w}=\mathrm{p}-\mathrm{v}, \mathrm{u} \neq \mathrm{v} \neq \mathrm{p} \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
\mathrm{u}^{2}-\mathrm{p}^{2}=\mathrm{R}^{3} \tag{3}
\end{equation*}
$$

Solving (3) in different ways, the values of u, p, R are obtained. In view of (2), the corresponding values of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ satisfying (1) are determined.

Way 1 :
Employing the well-known identity

$$
\begin{equation*}
(a+b)^{2}-(a-b)^{2}=4 a b, \tag{*}
\end{equation*}
$$

it is seen that (3) is satisfied by

$$
\mathrm{u}=\frac{\mathrm{R}^{3}+1}{2}, \mathrm{p}=\frac{\mathrm{R}^{3}-1}{2}
$$

As our interest is on finding integer solutions ,observe that the choice

$$
\begin{equation*}
\mathrm{R}=2 \mathrm{k}+1 \tag{4}
\end{equation*}
$$

gives

$$
\mathrm{u}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}+1, \mathrm{p}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}
$$

In view of (2), it is seen that

$$
\left.\begin{array}{l}
\mathrm{x}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}+1+\mathrm{v}, \mathrm{y}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}+1-\mathrm{v}, \tag{5}\\
\mathrm{z}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}+\mathrm{v}, \mathrm{w}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}-\mathrm{v}
\end{array}\right)
$$

Thus,(4) and (5) represent the integer solutions to (1).

Peer Reviewed Journal
ISSN 2581-7795
Relations between the solutions and special figurate numbers:
(I). Each of the following expressions is a cubical integer:

$$
x+w, y+z, x+y-1, z+w+1
$$

(II). $\mathrm{x}+\mathrm{y}-6 \mathrm{P}_{\mathrm{k}}^{3}-14 \mathrm{P}_{\mathrm{k}}^{5}$ is a square multiple of 2
(III). $\mathrm{z}+\mathrm{w}-3 \mathrm{CP}_{\mathrm{k}}^{16}-\mathrm{t}_{26, \mathrm{k}} \equiv 0(\bmod 22)$
(IV). $\mathrm{z}+\mathrm{w}-6 \mathrm{CP}_{\mathrm{k}}^{8}-\mathrm{t}_{26, \mathrm{k}} \equiv 0(\bmod 19)$

Note 1:
The other choices of integer solutions to (1) on using (*) are exhibited below:
Choice 1:

$$
\mathrm{x}=\mathrm{t}_{3, \mathrm{k}}+\mathrm{v}, \mathrm{y}=\mathrm{t}_{3, \mathrm{k}}-\mathrm{v}, \mathrm{z}=\mathrm{t}_{3, \mathrm{k}-1}+\mathrm{v}, \mathrm{w}=\mathrm{t}_{3, \mathrm{k}-1}-\mathrm{v}, \mathrm{R}=\mathrm{k}
$$

Choice 2:

$$
x=s^{2 \alpha}+2 s^{\alpha}+v, y=s^{2 \alpha}+2 s^{\alpha}-v, z=s^{2 \alpha}-2 s^{\alpha}+v, w=s^{2 \alpha}-2 s^{\alpha}-v, R=2 s^{\alpha}
$$

Choice 3:

$$
\mathrm{x}=2 \mathrm{~s}^{2 \alpha}+\mathrm{s}^{\alpha}+\mathrm{v}, \mathrm{y}=2 \mathrm{~s}^{2 \alpha}+\mathrm{s}^{\alpha}-\mathrm{v}, \mathrm{z}=2 \mathrm{~s}^{2 \alpha}-\mathrm{s}^{\alpha}+\mathrm{v}, \mathrm{w}=2 \mathrm{~s}^{2 \alpha}-\mathrm{s}^{\alpha}-\mathrm{v}, \mathrm{R}=2 \mathrm{~s}^{\alpha}
$$

Choice 4:

$$
\mathrm{x}=2 \mathrm{~s}^{3 \alpha}+1+\mathrm{v}, \mathrm{y}=2 \mathrm{~s}^{3 \alpha}+1-\mathrm{v}, \mathrm{z}=2 \mathrm{~s}^{3 \alpha}-1+\mathrm{v}, \mathrm{w}=2 \mathrm{~s}^{3 \alpha}-1-\mathrm{v}, \mathrm{R}=2 \mathrm{~s}^{\alpha}
$$

Way 2 :
Taking

$$
\mathrm{R}=\mathrm{p}
$$

in (3), it gives

$$
\mathrm{u}^{2}=\mathrm{p}^{2}(1+\mathrm{p})
$$

which is satisfied by

$$
\mathrm{p}=\mathrm{k}^{2}+2 \mathrm{k}, \mathrm{u}=\left(\mathrm{k}^{2}+2 \mathrm{k}\right)(\mathrm{k}+1)
$$

Using (2),the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& \mathrm{x}=\left(\mathrm{k}^{2}+2 \mathrm{k}\right)(\mathrm{k}+1)+\mathrm{v}, \mathrm{y}=\left(\mathrm{k}^{2}+2 \mathrm{k}\right)(\mathrm{k}+1)-\mathrm{v}, \\
& \mathrm{z}=\mathrm{k}^{2}+2 \mathrm{k}+\mathrm{v}, \mathrm{w}=\mathrm{k}^{2}+2 \mathrm{k}-\mathrm{v}, \mathrm{R}=\mathrm{k}^{2}+2 \mathrm{k}
\end{aligned}
$$

Relations between the solutions and special figurate numbers :
(i). $\mathrm{x}+\mathrm{y}=12 \mathrm{P}_{\mathrm{k}}^{3}$
(ii). $\mathrm{x}+\mathrm{w}-2 \mathrm{P}_{\mathrm{k}}^{5}-\mathrm{t}_{8, \mathrm{k}} \equiv 0(\bmod 6)$
(iii). $\mathrm{x}+\mathrm{w}=\mathrm{CP}_{\mathrm{k}}^{6}+8 \mathrm{t}_{3, \mathrm{k}}$
(iv). $\mathrm{x}+\mathrm{w}-\mathrm{CP}_{\mathrm{k}}^{18}-\mathrm{t}_{26, \mathrm{k}} \equiv 0(\bmod 25)$
(v). $\mathrm{z}+\mathrm{w}-\mathrm{t}_{6, \mathrm{k}} \equiv 0(\bmod 5)$
(vi). $x+y=4 P_{k}^{5}+8 t_{3, k}$
(vii). $\mathrm{x}+\mathrm{y}-\mathrm{CP}_{\mathrm{k}}^{12}-\mathrm{t}_{14, \mathrm{k}} \equiv 0(\bmod 10)$
(viii). $\mathrm{x}+\mathrm{y}-\mathrm{CP}_{\mathrm{k}}^{12}-10 \mathrm{t}_{3, \mathrm{k}}$ is a perfect square

Note 2 :
Suppose one assumes

$$
\mathrm{R}=\mathrm{u}
$$

in (3), then the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=-\left(k^{2}+2 k\right)+v, y=-\left(k^{2}+2 k\right)-v \\
& z=-\left(k^{2}+2 k\right)(k+1)+v, w=-\left(k^{2}+2 k\right)(k+1)-v, R=-\left(k^{2}+2 k\right)
\end{aligned}
$$

Conclusion:
An attempt has been made to obtain non-zero distinct integer solutions to the nonhomogeneous cubic diophantine equation with five unknowns given by $x y-z w=R^{3}$. One may search for other sets of integer solutions to the considered equation as well as other choices of the third degree diophantine equations with multi-variables.

References :

1. M.A.Gopalan ,S.Vidhyalakshmi and T.R.Usha Rani ,On the cubic equation with five unknowns $x^{3}+y^{3}=z^{3}+w^{3}+t^{2}(x+y)$ Indian Journal of Science, Vol. 1 ,No.1,1720,2012
2. M.A.Gopalan ,S.Vidhyalakshmi and T.R.Usha Rani ,Integral solutions of the cubic equation with five unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{u}^{3}+\mathrm{v}^{3}=3 \mathrm{t}^{3}$,IJAMA ,Vol.4(2), 147-151, 2012
3. M.A.Gopalan, S. Vidhyalakshmi, M.Manjula, E. Premalatha and N.Thiruniraiselvi, On homogeneous cubic equation with five unknowns $x^{3}+y^{3}=z\left(P^{2}+W^{2}-P W\right)$, Cayley J.Math,

Peer Reviewed Journal

ISSN 2581-7795
Vol.2(2),Pp.131-137, 2013
4. M.A.Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, On the cubic equation with five Unknowns $3\left(x^{3}-y^{3}\right)=z^{3}-w^{3}+12 t^{2}+4$, International Journal of Engineering, Science and Mathematics, Vol.2(1),Pp.227-236, March 2013
5.M.A.Gopalan and V.Geetha ,Integral solutions of the homogeneous cubic equation $x^{3}+y^{3}+x y(x+y)-z^{3}-w^{3}-z w(z+w)=(x+y+z+w) X^{2}$, International Journal of Computational Engineering Research ,Vol.3(5),23-27,2013
6. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, " Integral points on the cubic equation with five unknowns $\mathbf{x}^{3}+\mathbf{y}^{3}=\mathbf{z}^{3}+\mathbf{w}^{3}+6 \mathbf{t}^{2} "$, Diophantine J. Math., Volume 2, No.1, 39-46, 2013.
7. M.A. Gopalan, S. Vidhyalakshmi, T.R. Usharani, " Integral solutions on the cubic equation with five unknowns $\mathbf{x}^{3}+\mathbf{y}^{3}+\mathbf{u}^{3}+\mathbf{v}^{3}=\mathbf{k} \mathbf{t}^{3} "$, Bessel J. Math., Volume 3, No. 1, 69-75, 2013.
8. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, " Integral points on the cubic equation with five unknowns $\mathbf{x}^{3}+\mathbf{y}^{3}=\mathbf{z}^{3}+\mathbf{w}^{3}+6(\mathbf{x}+\mathbf{y})+6 \mathbf{t}^{2} "$, AJAMMS, Volume 2, No.1, 31-35, 2013.
9. M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha, " On the cubic equation with five unknowns $4\left(\mathbf{x}^{3}+\mathbf{y}^{3}\right)=\mathbf{z}\left[4 \mathbf{w}^{2}+4 \mathbf{p}^{2}-4 \mathbf{p w}+(\mathbf{x}+\mathbf{y})^{2}\right]$ ", Archimedes J. Math., 4(1), 19-25, 2014.
10.S. Vidhyalakshmi, M.A. Gopalan, K. Lakshmi," On the non-homogeneous cubic equation with five unknowns $\mathbf{x}^{2}+\mathbf{x y}-\mathbf{y}^{2}-\mathbf{z}-\mathbf{w}=\mathbf{T}^{3}$ ", IRJMEIT, Volume 1, Issue 4, 1-8, 2014.
11. M.A.Gopalan ,V.Geetha and P.Geethanjali, On the cubic Diophantine equation with five unknowns $x^{3}+y^{3}+(x+y) z^{3}=w^{2}-R^{2}$,Jamal Academic Research Journal-an interdisciplinary ,special issue,259-265, 2014
12.M.A.Gopalan ,S.Vidhyalakshmi ,V.Geetha ,M.Kalaimathi and V.Krithika ,On the cubic diophantine equation with five unknowns $x^{3}+y^{3}+(x+y)(x-y)^{2}=16(z+w) p^{2}$, International Journal of Physics and Mathematical Sciences ,Vol .5(1) ,59-63, 2015
13.M.A.Gopalan and V.Geetha ,On the non-homogeneous cubic equation with five unknowns $6\left(x^{3}-y^{3}\right)=z^{3}-w^{3}+12 p^{2}+10$, Jamal Academic Research Journal-an interdisciplinary,

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
special issue,274-279,2015
14. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, " On the non-homogeneous cubic equation with five unknowns $9\left(\mathbf{x}^{3}-\mathbf{y}^{3}\right)=\mathbf{z}^{3}-\mathbf{w}^{3}+12 \mathbf{p}^{2}+16 "$, IJIRR, Volume 3 , Issue 6 , 2525-2528, 2016.
15.M.A. Gopalan, J. Shanthi," On the non-homogeneous cubic equation with five unknowns $(\mathbf{a}+1)^{2}\left(\mathbf{x}^{3}-\mathbf{y}^{3}\right)=(2 \mathbf{a}+1)\left(\mathbf{z}^{3}-\mathbf{w}^{3}\right)+6 \mathbf{a}^{2} \mathbf{p}^{2}+2 \mathbf{a}^{2}$ ", IJMSET, Volume 3, Issue 5, 32-36, 2016.
16. M.A.Gopalan,S.Vidhyalakshmi and S.Hemalatha ,On The Cubic Equation with Five Unknowns, $\mathrm{x}^{3}+\mathrm{y}^{3}=84(\mathrm{z}+\mathrm{w}) \mathrm{p}^{2}$,AJAST ,Vol.1,Issue $7,144-146,2017$

